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Abstract

Images from Voyager revealed a hexagonal structure near Saturn’s northern pole at ≈ 77◦ north

planetographic latitude. Ground based observations and images from the Hubble Space Telescope

(HST) in the early 90s, along with Cassini data from recent years confirm that the structure

still exists and appears relatively unchanged. Over the decades spanning its discovery, several

theoretical descriptions of the phenomena have been offered. Allison et al. proposed a Rossby

wave model sustained by perturbative forcing from a nearby vortex [2]. A more recent model by

Barbosa Aguiar et al., based on barotropic instabilities caused by jets to the north and south of the

hexagon’s zonal flow, supported theory with experimental results by producing polygonal shapes

in fluid flows within the laboratory [1]. Numerical simulations confirming this theory to an extent

were also conducted [12]. Here, I present an overview of the observational data collected on the

Saturnian north polar hexagon. I also discuss the two theoretical models that were put forth to

explain the cause of its six-sided structure and their correctness in light of new observational data

and experimental results.
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I. INTRODUCTION

In the 1980s images of Saturn taken by Voyager led to Godfrey’s surprising discovery

of a hexagonal structure on the planet’s north pole [9]. Now, over three decades later,

Saturn’s north polar hexagon remains, superficially unchanged and not entirely understood.

Voyager’s iconic images proved a challenge to explain theoretically, but with additional data

from ground based observations and the HST in the early 90s, and images from the Cassini

mission more recently, our knowledge of many physical parameters forming the hexagon has

increased. Along with observation, laboratory experiments and numerical simulations have

helped foster greater understanding of the possible causes of the jet’s six-sided shape.

This paper first details the discovery of the hexagon by Godfrey and his initial measure-

ments of the structure’s velocity field and rotation rate [9, 10]. A brief discussion of ground

based and HST observations follow that support the earlier velocity measurements [5, 15]. I

next provide a theoretical description of the hexagon as a stationary Rossby wave, suggest-

ing that its overall structure is sustained by perturbations from a nearby vortex observed

in the Voyager images [2]. Finally, I discuss recent observational and experimental data

and a different theoretical treatment of the hexagon based on barotropic instability theory

[1, 3, 6, 12]. I also give a basic overview of some important fluid dynamic concepts in the

appendix. Much of the technical terminology can be found there. I hope that this provides

some intuition for understanding the theory, but a full, mathematical treatment of advanced

concepts will be skipped.

II. DISCOVERY AND INITIAL MEASUREMENTS

The series of images of Saturn taken by Voyager 1 and 2 were mainly of Saturn’s equatorial

region. In order to visualize the north pole, Godfrey accounted for the spherical distortion

effect by polar projecting the equatorial images and stitching them together as seen in

Figure 1. He discovered a hexagonal structure at 77◦ that appeared to be moving at 6.3±

8 × 10−8rad/s relative to the Saturnian Radio (SR) rotation period [9]. The SR period is

thought to be due to Saturn’s magnetic field, which in turn reflects conditions within the

conductive interior of the planet. Hence, it is believed to give an accurate measure of the

rotation rate of Saturn’s interior and indicates that the hexagon is stationary relative to
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FIG. 1: Images of the Saturn polar hexagon as viewed by Voyager (left), Cassini-ISS

(middle), and Cassini-VIMS (right). The impinging vortex is visible along the bottom left

edge of the Voyager-taken image [12, fig 1].

Saturn’s interior rotation within uncertainties [9]. For the rest of this paper, all quoted

velocites will be relative to the SR rotation.

Along with the hexagon, a large anticyclonic vortex along one of the edges of the hexagon

can be seen in Figure 1, and its movement was associated with that of the hexagon itself [9,

12]. In a follow-up paper, Godfrey assumed the rotation rate of the hexagon to be equivalent

to that of the vortex. By measuring the relative velocity of the vortex, he concluded the

rotation period of the polar hexagon to be −8.13 ± 0.52 × 10−9rad/s, again suggesting an

association between the hexagon and the planet’s interior [10].

By tracking invidual cloud features within the hexagon, Godfrey measured the mean

zonal velocity of the flow at the center of the hexagon to be ≈ 100m/s [9]. This result is a

measure of the latitudinal velocity averaged over a zonal region via a nearest neighbor fit

routine. Eastward movement was taken to be positive. The mean zonal velocity falls off

moving latitudinally away from the center of the hexagon such that the the flow drops to

≈ −20m/s to the south and ≈ 10m/s to the north [9]. A latitudinal profile of the mean

zonal velocity indicates an approximately Gaussian distribution as indicated in Figure 5.

This velocity profile would prove to be important for theoretical treatments of the hexagon

and will be a focus of discussion later [1, 2, 12].

Apart from the two Voyager flybys, observations of Saturn with ground based instru-

ments and the HST served to confirm Godfrey’s earlier analyses. Using a 1.05m diameter
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telescope at Pic-du-Midi Observatory, a group led by Sanchez-Lavega observed Saturn’s

north pole over a period from July 1990 to December 1991 [15]. During this time, Saturn

held a favorable orientation relative to Earth that allowed views of the polar hexagon and

the associated vortex. The vortex’s central longitude and latitude were measured and by

combining the Pic-du-Midi data with Voyager’s, a mean rotation rate of −1.17× 10−8rad/s

over the 11 year period was cited [15]. Over a similar time period, the HST also took several

images of Saturn’s polar region. Focusing on measuring the position of the center of the

vortex accurately, Caldwell’s group defined the center of the planet as the center of the

ellipse defined by Saturn’s rings [5]. This was repeated for each image, and the longitude

and latitude of the center of the polar spot was determined with high accuracy. A long

term drift rate of −1.15 × 10−8rad/s was reported, in fair agreement with both Godfrey’s

and Sanchez-Lavega’s measurements [5]. It should be noted that all three measurements

cited the uncertainty in the Saturnian rotation period as a possible systematic in their cal-

culations. Nevertheless, the agreement between Voyager, Pic-du-Midi, and the HST data

strongly indicated that the hexagon was both a stationary and long term feature on Saturn.

III. EARLY HYPOTHESES

The Voyager observations led Godfrey to discuss four possible causes of the stationary

rotation rate of the hexagon [9]. First, stated as being unlikely, is that the rotation rate

could just be a coincidence, since a stationary rotation rate is as good as any other. Another

possibility is forcing, from either above or below, corresponding to Saturn’s rotation, that

creates the hexagonal wave. The third possibility regarded the hexagon as an aurora instead

of cloud patterns, and the fourth that the radio rotation rate of Saturn is actually being

generated by the hexagon instead of the planetary interior [9]. Aside from the second,

these theories all seem fairly far fetched, which is understandable considering the amount

of data existing at the time. The third suggestion is easily refuted by Cassini imaging data

[3], while the fourth would require a direct connection between the hexagon and Saturn’s

magnetic field. If we assume that the hexagonal features are clouds, they would have to be

ammonia crystals that could only occur within the troposphere, not the ionosphere, and its

low conductivity would be unlikely to affect the magnetic field [7].

The second possibility of forcing can be divided into either forcing from below or forcing
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FIG. 2: Credit J. Trauger (JPL), NASA, [16]. Image of Saturn’s polar UV-aurora taken by

the HST.

from above. Godfrey maintains that forcing from above could be due to aurora features close

to the hexagon [9]. However, this would suggest that there exists a similar hexagon in the

Southern region due to symmetrical north-south aurora patterns as seen in Figure 2. Images

from Cassini, Figure 3, again show that this is not the case [6]. Further, the atmospheric

depth of the hexagon and its seasonal independence strongly suggests that solar effects are

not its cause [3]. Forcing from below seems to be the last realistic hypothesis. Gierasch

supported this theory by positing thermal convection from the interior as the cause of the

stationary hexagon [7]. The limited data on Saturn’s interior, however, constrains this

interpretation to opinion, not fact.

IV. THE ROSSBY WAVE THEORY

The first mathematical description of Saturn’s hexagon was the Rossby wave theory of-

fered by Allison, Godfrey, and Beebe [2]. Rossby waves are large scale planetary waves

characterized by low frequency modes and a non-zero Coriolis parameter [13, 14]. It is typi-
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cally used in studies of large-scale, low-frequency waves in Earth’s atmosphere, but Saturn’s

hexagon also exhibits its properties [2]. The large planetary scale of Saturn’s hexagon, as

well as its westward drift relative to the mean background zonal flow are distinguishing fea-

tures of Rossby waves [14]. With regards to its westward phase drift, recall that the hexagon

appears stationary while the jets within move at high velocities eastward, this is allowed

by the Rossby wave dispersion relation (a measure of the wave velocity), given in Equation

1, which indicates that stationary waves can exist if U > 0 [14]. Finally, it completes six

patterns about a latitudinal region, thus its wavenumber is six.

Two factors contribute to the restoring force of Rossby wave oscillations. First, the

gradient of the planetary vorticity as defined by Equation A.3, β = 2Ω cos(θ)/a, where Ω is

the planetary rotation rate, a its radius, and θ the latitude. Second, the negative curvature

of the mean zonal flow in the meridional (y) direction, −uyy [2]. This can be thought of as

the gradient of the relative vorticity discussed in the appendix. The hexagon’s zonal velocity

profile can be modeled as a Gaussian function of the meridional distance from center [2]. In

the β-plane approximation, which takes a latitudinal strip around a sphere and approximates

it as a plane, simplifying the spherical geometry into a planar geometry [14], it can be shown

that the planetary vorticity gradient is negligible. First note that the 1/e distance, Le, from

the mean in our Gaussian velocity profile is ≈ 1800km [2]. In the β-plane approximation, for

latitudes within this Le region the total vorticity gradient is dominated by the mean zonal

flow [2]. Intuitively, this is because a Gaussian bell curve has maximal negative curvature

near its mean. The hexagon’s velocity profile is well-modeled by a Gaussian as seen in Figure

7, and thus the planetary vorticity gradient can be neglected in the Rossby wave model [2].

These approximations allows the calculation of the Rossby phase speed for barotropic

waves (a brief exposition of barotropic fluids can be found in the appendix) [2],

c = U − 〈−Uyy〉e
( r
n

)2

. (1)

Here, c is the horizontal phase velocity, n the zonal wave number, and r the radius of the

latitudinal circle, and U is our Gaussian velocity profile [2]. For the hexagon, r ≈ 1.4×107m,

U ≈ 100m/s, 〈−Uyy〉e ≈ 2.2 × 10−11m−1 s−1 and n = 6, giving c ≈ 0 as expected for a

stationary wave [2]. However, it is important to note that this approximation neglects the

vertical structure of the wave and its strict meridional confinement [2]. Nevertheless, the

vertical structure can be constrained such that the resulting wave equation has a solution.
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FIG. 3: Saturn’s polar temperatures as captured by CIRS. The northern hemisphere is on

the right, the southern hemisphere on the left. A and B are at an altitude of 100 mbar in

the troposphere, C and D at 1 mbar in the stratosphere [6, fig 1].

This solution includes a perturbation term, which is assumed to be the stationary vortex

impinging on one side of the hexagon [2]. Furthermore, assuming a vertically trapped wave

with a vertical structure that is related to the zonal wave number in a specific manner, it

can be shown that the meridional confinement of the hexagon is due to this pertubation [2].

Although Saturn’s vertical structure is not well understood, based on studies of Earth’s

atmosphere we know that vertically trapped, stationary waves can be forced from below

by internal heating [2]. This effectively sets a lower boundary condition that is dependent

on thermal variations in the vertically stratified layers of the atmosphere. It is consistent

with the possibility of internal forcing as suggested by Gierasch [7]. While the Rossby wave

model describes the hexagon well phenomenologically, new data from the Cassini mission

illustrates that the hexagon’s structure cannot be due to the impinging vortex.
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FIG. 4: Polar projection of nine 5.1µm images of Saturn’s north pole. Images were

obtained in darkness, thus clouds are seen as dark in the left images as they block Saturn’s

5.1µm thermal emission. The photometrically inverted image on the right shows clouds as

bright [3, fig 1].

V. OBSERVATIONS BY CASSINI

In 2007 the Cassini probe orbited Saturn at a high latitudinal inclination and provided

the first close-up images of Saturn’s poles since Voyager. Although the northern pole was

shrouded by the seasonal tilt, the Cassini Composite Infrared Spectrometer (CIRS) took

images of both the north and south poles at mid-infrared wavelengths [6]. It thus revealed

the polar thermal distribution seen in Figure 3, and verified the existence of Saturn’s north

polar hexagon. Similar ephemeral polygonal waves were seen in the south polar region, but

none displayed the permanence of the north polar hexagon [6]. Notably, the CIRS images did

not contain any resemblance of the impinging anticyclonic vortex as seen in earlier studies

[6].

Images taken by the Cassini Visual-Infrared Mapping Spectrometer (VIMS) at 5.1µm are

displayed in Figure 4. Again, no evidence of the impinging vortex was observed [3]. Zonal

wind profile measurements were made using VIMS images and cloud-tracking methods. The

results are displayed in Figure 5, and a maximum mean zonal wind velocity of 124.5±8.7m/s

was recorded [3]. An analysis conducted assuming constant absolute vorticity as a function

of latitude showed disagreement between expected and observed mean zonal wind profiles.
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In two dimensional fluids, absolute vorticity tends to be conserved, but in three dimensions

it is the potential vorticity, defined in Equation A.5, that is conserved under the conditions

given in the appendix [13]. Cassini thermal measurements combined with results from the

zonal velocity profile measurements gave a mean potential vorticity value as a function of

latitude. The results showed that there is a step in potential vorticity at the hexagon’s

latitude [3].

FIG. 5: Mean zonal velocity profile with Cassini data. The dashed and dotted lines are

model wind velocities assuming a constant absolute vorticity. Eastward is taken to be

positive along the vertical axis [3, fig 3].

The disappearance of the impinging vortex indicates that the perturbative Rossby wave

theory cannot be correct [6]. Additionally, the fact that the hexagonal structure exists deep

into the troposphere and seems unaffected by seasonal variations rules out solar effects on

the formation of the hexagon [3]. Finally, the disagreement between the hexagon’s velocity

profile and the velocity profile expected from a constant absolute vorticity indicates that

the third, vertical dimension plays a crucial role the formation and stability of the hexagon.

Further, potential vorticity non-conservation indicates that one or more of the conditions

listed in the appendix does not apply to the hexagon. This hints that a new theoretical ap-

proach is needed to describe the hexagon. Experimental and numerical studies of polygonal

flows arising from barotropic instabilites are one such alternative [3].
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(a) Pentagon [11] (b) Ring setup [1] (c) Disk setup [1]

FIG. 6: Polygons in rotating fluid flow experiments. In (a) the experimental apparatus is a

partially filled cylinder with a rotating bottom [11]. The other two figures are taken from

[1, fig 9,10] and show results from the two experimental setups used by Barbosa Aguiar.

VI. LABORATORY AND NUMERICAL STUDIES

Rotating polygonal fluid flows have been created in several laboratory environments.

One study by Jansson et al. demonstrated that stable polygons can be driven by the

rotating bottom plate of a partially filled cylinder [11]. They speculate that this symmetry

breaking is triggered by the minute wobbling of the bottom plate [11]. Another study led by

Barbosa Aguiar cited barotropic instabilities in the surrounding zonal jets of the hexagon

to be the driving force behinds its polygonal structure [1]. Barotropic instability can arise

from horizontal shear forces in the flow, which convert kinetic energy of the zonal flow

into kinetic energy of the resulting eddies [1, 13]. Using two different experimental setups,

they generated polygons in a rotating fluid as seen in Figure 6, and demonstrated the

existence of surrounding barotropically unstable regions similar to those measured around

Saturn’s hexagon [1]. A third numerical simulation also cites zonal jet instabilities as a

direct link in the production of a stable polygon flow [12]. These experimental results are

worth elaborating. Their analyses leads to the conclusion that Saturn’s hexagon might well

arise from similar flow instabilities as the polygons in Earth’s experiments.

In the experiment by Jansson et al. the constraint parameters were the rotating velocity

of the bottom plate and the height of the fluid. Two different fluids were tested, ethyl

alcohol and water, and both exhibited rotating polygon formation [11]. The rotation rate of

10



the polygons were all found to be much less than the rotation rate of the bottom plate, and

the number of sides of the formed polygon increased with rotation frequency and decreased

with fluid height [11]. They attributed this spontaneous axial symmetry breaking to the

wobbling of the bottom plate.

FIG. 7: From [1, fig 1]. Voyager measured zonal velocity profile and Saturn’s vorticity

gradient as a function of latitude. The horizontal dashed line at ≈ 77◦ correspond to the

hexagon. On the right plot, the dashed line correspond to β, the solid line uyy.

A more direct analogue experiment to Saturn’s hexagon involved testing the assump-

tions of barotropic instability as a possible cause of the hexagon. A necessary condition of

barotropic instability is the Rayleigh-Kuo criterion,

β − uyy < 0, (2)

where β = df/dy and uyy is the curvature of the zonal velocity profile along the northward

direction [1]. As seen in Figure 7, the Rayleigh-Kuo criterion is violated on either side of

the hexagon’s latitude at ≈ 77◦ [1]. However, satisfying the Rayleigh-Kuo criterion alone is

not sufficient for barotropic instability. If it were, one might wonder as to why no polygonal

shape occurs in the southern polar region or anywhere else on Saturn for that matter.
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FIG. 8: The setup of the laboratory experiment conducted by Barbosa Aguiar et al. Two

differentially-rotating sections were employed, a ring and a disk, to force out a zonal jet

profile [1, fig 4].

After all it seems that the Rayleigh-Kuo criterion is violated in several regions of latitude

below the hexagon. A theoretical model based upon a linearised barotropic equation was

solved for a measured, Saturnian zonal velocity profile and several radii of deformation, LD

[1]. The Rossby radius of deformation can be intuitively thought of as the horizontal length

scale at which rotational effects (e.g. Coriolis force) become as important as buoyancy effects

(e.g. gravity) [8]. The solution to the linearised barotropic equation gave the wavenumber of

maximal growth rate as a function of LD. In the case of a wavenumber of 6, the corresponding

LD was found to be 2500km, whereas LD for a jet at the hexagon’s latitude is estimated to

be 1135km [1, 12]. In the case of southern polar jets, solutions were found to peak at infinite

wavenumbers [1].

In order to investigate this topic further, a laboratory model was developed using the two

slightly differing setups shown in Figure 8. Both involved cylinders rotating at Ω, but the

distinguishing feature is the separate differentially-rotating section [1]. This section could
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FIG. 9: The mean zonal velocity (left) and vorticity gradient (right) as measured from

analysis of flow images in laboratory experiments using the ring setup. On the right, β = 0

corresponds to the dashed line, and violation of the Rayleigh-Kuo criterion is evident.

Also, note how the profiles appear similar to the observed Saturnian hexagon’s profile in

Figure 7 [1, fig 6].

either be a disk in contact with both the top and bottom of the fluid or a ring in contact with

only the upper fluid surface, and its differential rotation forces out a jet-like flow from the

body fluid [1]. A non-zero β parameter could be simulated by conical bottoms sloping away

from the center. The results for both setups are shown in Figure 6, and their measured mean

zonal flow velocities and vorticity gradients are shown in Figure 9. These appear similar

to the profiles observed for Saturn’s hexagon, and violation of the Rayleigh-Kuo criterion

occurs on either side of the jet flow [1].

Additionally, a numerical simulation based on the Explicit Planetary Isentropic-Coordinate

(EPIC) model demonstrated the possible formation of stable polygons as a result of insta-
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bilities arising from zonal jet nonlinear equilibrations [12]. They found that the zonal wave

number depended strongly on uyy, as speculated in previous studies. By initially seeding the

simulation with a Gaussian velocity profile, polygons formed and propagated with velocities

given by the Rossby wave dispersion relation, as suggested years earlier by Allison et al.

[2, 12]. However, their simulated propagation rate did not match the hexagon’s observed

rotation. A modified initial velocity profile was developed, with an additional term that

“slowed down” the wave propagation [12]. The simulated jets violated the Rayleigh-Kuo

criterion, and the dominant instability mode was speculated to be barotropic instabilities

in agreement with the Barbosa Aguiar experiment discussed above [12].

VII. CONCLUSION

Although the exact cause behind Saturn’s north polar hexagon still remains somewhat of

a mystery, much progress has been made since its initial discovery to allow a better under-

standing of a startling phenomena. Starting with Voyager and Godfrey’s initial discovery,

the hexagon first appeared alongside an impinging vortex, with a near zero rotation rate

relative to Saturn’s radio rotation period [9]. Images from the HST and Pic-du-Midi obser-

vatory in the early 90s confirmed both facts over ten years later [5, 15]. The images from

Voyager bedazzled and baffled scientists, and many early hypotheses as to the cause of the

stationary wave were speculated. The most realistic of them, forcing from below due to

internal convective heating, was propounded by both Godfrey and Gierasch [7, 9], but it

wasn’t until the Rossby wave theory that a mathematical description of the nature of the

hexagon was given [2]. With the Cassini mission entering into orbit in 2004, interest in Sat-

urn’s hexagon was revived. It was discovered that the impinging vortex no longer existed,

thus refuting the perturbative Rossby wave theory given by Allison et al. [3]. Laboratory

experiments demonstrated the possibility of spontaneous polygonal formation in rotating

fluids, with the cause attributed to barotropic instabilities arising in the zonal jet flows sur-

rounding the polygons [1, 11, 12]. The laboratory analogue were found to have zonal flows

and vorticity gradients comparable to those observed on Saturn, and is probably the best

explanation of Saturn’s hexagon we have today.
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Appendix: Fluid Dynamics in Brief

The following is a summary of some chapters from Pedlosky’s Geophysical Fluid Dynam-

ics [13], Batchelor’s An Introduction to Fluid Mechanics [4], and Gill’s Atmosphere-Ocean

Dynamics [8].

A fluid flow is, at the most fundamental level, described by a velocity field, u. In the

Eulerian methodology, this requires a velocity vector to be assigned at every point in the

space of the fluid [4]. It is then of interest to attack the problem of the time evolution the

velocity field,

du

dt
=
∂u

∂t
+ u · (∇u). (A.1)

The continuity equation, along with conservation laws, gives an equation of motion for u in

a non-rotating frame [13]. In a rotating frame, the equation of motion is modified by the

Coriolis acceleration to be,

ρ

[
du

dt
+ 2Ω× u

]
= −∇p+ ρ∇Φ + F , (A.2)

where the density ρ has been assumed constant, Ω is the planetary rotation, p the pressure, Φ

is the modified potential due to gravity and centripedal acceleration, and F is any additional

frictional force [13]. From Equation A.2, we see that the Coriolis acceleration contributes

a factor of 2Ω × u, estimated as O(2ΩU). Taking the ratio of the relative acceleration

du
dt
≈ O(U2/L) to the Coriolis acceleration gives the important Rossby number ε = U

2ΩL

[4, 13]. The Rossby number is an estimate of the relative importance of the Coriolis force on

the velocity field. For small Rossby number, the Coriolis acceleration is important. This is

the case for large scale flows such as Saturn’s hexagon as the relative acceleration becomes

small in comparison to the Coriolis acceleration.

Given a velocity field, it is useful to define the vorticity as ω = ∇ × u and work with

equations of motion in terms of the vorticity instead [4, 13]. Note that there is a direct

analogy between the relationship of vorticity and velocity field to that of the current density

and magnetic field. However, there is no causal relationship in the case of vorticity and

velocity field; the vorticity is simply a useful and intuitive concept for understanding fluid

flows. The planetary vorticity is 2Ω and the component of the planetary vorticity normal

to the planet’s surface is called the Coriolis parameter [13],

f = 2Ω sin θ. (A.3)
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By treating a thin latitudinal strip on a sphere as a geometrically flat plane, f can be linearly

approximated as f ≈ f0 + β0y, where f0 = 2Ω sin θ0 and β0 = 2Ω
r0

cos θ0 [13]. This is called

the β-plane approximation, and is used extensively in atmospheric models, including that

of Saturn’s hexagon.

In a rotating reference frame, the absolute vorticity is defined as ωa = ω + 2Ω, the sum

of relative and planetary vorticities. Starting with Equation A.2, it is possible to derive the

vorticity equation [13]:

dω

dt
= ωa · ∇u− ωa∇ · u +

∇ρ×∇p
ρ2

+∇× F
ρ
. (A.4)

The third term on the right hand side is called the baroclinic vector. A fluid is baroclinic

if ∇ρ×∇p
ρ2

6= 0, and barotropic otherwise. A barotropic fluid thus by definition must have

coinciding surfaces of constant ρ and p, and a relation ρ = ρ(p) can be found [13]. Instabilities

that arise in both barotropic and baroclinic fluids play a crucial role in large scale flow

dynamics and the wave patterns that arise in planetary atmospheres. Several theoretical

descriptions of the Saturnian north polar hexagon use instability theory as a starting point

in modeling its dynamical behavior.

Finally, one can define the potential vorticity as

Π =
ωa

ρ
· ∇λ, (A.5)

where λ is some property such as density or the potential temperature [13]. The poten-

tial vorticity is a useful concept as it allows vertical structure to be incorporated via the

parameter λ for three dimensional fluids. It is conserved under the following conditions:

• the fluid is barotropic or λ is dependent on only ρ and p,

• λ is conserved for each fluid element,

• the frictional force is negligible [13].
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