Charm Physics from FOCUS

Kevin Stenson

stenson@fnal.gov

University of Colorado – Boulder

Weak Interactions and Neutrino Workshop, 2003

Outline

- Charm and FOCUS
- Lifetimes
- Hadronic Decays
- Rare Decays
- Mixing
- Summary

Why charm?

Charm has been around 30 years but, like strange physics, is still relevant

Window to new physics

- Standard model rates for rare decays, CP violation, mixing are very low
- With current experiments, observation of CP violation, rare decays, or mixing ⇒ new physics
- Provides information about QCD
 - Measurements of production characteristics, lifetimes, branching ratios, subresonant analyses, etc. provide insight into QCD

Needed for b physics

- Many b particles decay to charm so branching ratios, lifetimes, etc. needed for accurate b results
- Experimental techniques can be developed in charm (lifetime measurement, Dalitz plot analyses, etc.)
- Heavy Quark Effective Theory often needs charm to bootstrap to b physics

Summary of FOCUS

- **FOCUS** obtains charm from $\sim 175 \text{ GeV } \gamma$ on BeO interactions
- Open trigger requires hadronic energy and charged tracks
- Strengths are vertexing and particle ID
- Recorded 7 billion events in 1996–7 Fermilab fixed-target run
- Data analysis continues

Charm meson lifetimes

WIN '03

- World avg (FOCUS+PDG) gives ≈1% measurements of all charm meson lifetimes
- $\tau_{D^+}/\tau_{D^0} = 2.54 \pm 0.02 \Rightarrow$ large destructive interference
- $\tau_{D_s}/\tau_{D^0} = 1.22 \pm 0.01 \Rightarrow$ evidence for weak annihilation?

Charm baryon lifetimes

- Λ_c^+ PDG error dominated by 2.7 σ FOCUS/CLEO discrepancy. Systematic effect for short lived particles?
- \bullet $\tau_{\Omega_c^0} \approx 1/15 \times \tau_{D^+} \approx 1/3 \times \tau_{\Lambda_c^+}$; need boost & precise vertexing

Hadronic decays

Hadronic decays are rich in information about QCD

- Hadronic decays responsible for D^+ and D^0 lifetime difference
- Suppression of $D^0 \rightarrow \pi^- \pi^+$ to $D^0 \rightarrow K^- K^+$ proved importance of final state interactions in charm decays FOCUS has best measurement: $\frac{\Gamma(KK)}{\Gamma(\pi\pi)} = 2.81 \pm 0.10 \pm 0.06$
- Hadronic decays can provide information on relative strengths of decay diagrams (spectator, W exchange, annihilation, etc.) and post-decay hadronization
- May provide information on light resonances
- The charm sector is rich in hadronic decay modes

Accessing information from hadronic decays can be difficult

- Branching ratios are fairly simple to measure
- Resonant analyses of multi-body final states are not so easy
 - Resonance parameters often not well known
 - Quantum mechanical interferences complicate the analysis

$D^+, D^+_s \to \pi^+ \pi^- \pi^+$

- E791 found evidence for σ in $D^+ \rightarrow \pi^+ \pi^- \pi^+$ decays and $D_s \rightarrow \pi^+ \pi^- \pi^+$ decays dominated by $f_0(980)$
- **FOCUS** observes Dalitz plots with similar features
- **FOCUS** analysis fits with K-matrix rather than isobar model
 - Naturally include coupled-channel states like $f_0(980)$
 - Can deal with overlapping scalar states with large widths
 - Can incorporate information from strong scattering experiments
 - Anisovich & Sarantsev parameterize S-wave isoscalar scattering up to 1.9 GeV
 - Consider 5 channels: $\pi\pi$, $K\overline{K}$, $\eta\eta$, $\eta\eta'$, multimeson

Find 5 $IJ^{PC} = 00^{++}$ resonances: $f_0(980)$, $f_0(1300)$, $f_0(1500)$, $f_0(1750)$, $f_0(1200 - 1600)$

- Using this parameterization, and adding in vector and tensor particles, one can fit the $D^+, D_s \rightarrow \pi^+ \pi^- \pi^+$ Dalitz plots.
- Obtain good fits will be published soon

$D^+ \rightarrow \pi^+ \pi^- \pi^+$ Dalitz plot results

WIN '03

$D_s^+ \rightarrow \pi^+ \pi^- \pi^+$ Dalitz plot results

WIN '03

Preliminary $D^0 \rightarrow h^+ h^- h^+ h^-$ results

Amplitude analysis is ongoing

• $D^0 \to K^- K^+ \pi^- \pi^+$ dominated by $\phi \rho$ and $K^{*0} \overline{K}^{*0}$

• $D^0 \rightarrow \pi^- \pi^+ \pi^- \pi^+$ decay complicated by many $2\pi \& 3\pi$ resonances, σ possibilities, and $\rho\rho$ decays with various relative angular momenta

Measure $\frac{\Gamma(D^0 \to K^- K^+ K^- \pi^+)}{\Gamma(D^0 \to K^- \pi^+ \pi^- \pi^+)} = (0.257 \pm 0.034 \pm 0.023) \%$ compared to PDG2003: $(0.32 \pm 0.09) \%$

5-body charm meson decays

Charm physics from FOCUS – p. 13

 $\mathbf{D}^{\mathbf{0}}$

D

2.05 2.1

2.05 2.1

 GeV/c^2

 GeV/c^2

World Avg

 $D^0 \rightarrow K_s \pi \pi \pi \pi$

2

2

ᡌᡶ᠋ᢅᠸᢧᠮ

Resonant analyses of 5-body decays

- Incoherent fit performed using projections
- All 5-body decay modes show strong vector- ρ - π contributions
- $D^+ \stackrel{\text{consistent with}}{D^+ \to \overline{K}^{*0} a_1(1260)} \sim 60\%$
- $D_s^+ \text{ consistent with} \sim 100\% \ D_s^+ \rightarrow \phi a_1(1260)$
- D^0 consistent with being dominated by $D^0 \rightarrow K^{*-} a_1(1260)$
- All are consistent with being dominated by vector- $a_1(1260)^+$ with $a_1(1260)^+ \rightarrow \rho^0 \pi^+$

WIN '03

D^+ decay mode	Fraction (%)
$(K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-})_{\rm NR}$	$7\pm5\pm1$
$\overline{K}^{*0}\pi^-\pi^+\pi^+$	$21 \pm 4 \pm 6$
$K^- \rho^0 \pi^+ \pi^+$	$30 \pm 4 \pm 1$
$\overline{K}^{*0}\rho^0\pi^+$	$40 \pm 3 \pm 6$
D_s^+ decay mode	Fraction (%)
$(K^+K^-\pi^+\pi^+\pi^-)_{\rm NR}$	$10 \pm 6 \pm 5$
$\phi\pi^-\pi^+\pi^+$	$21 \pm 5 \pm 6$
$K^+K^- ho^0\pi^+$	<3@90% CL
$\phi ho^0 \pi^+$	$75 \pm 6 \pm 4$
D^0 decay mode	Fraction (%)
$(K_S \pi^+ \pi^+ \pi^- \pi^-)_{\rm NR}$	$-17 \pm 34 \pm 2$
$K^{*-}\pi^{+}\pi^{+}\pi^{-}$	$17 \pm 28 \pm 2$
$K_S \rho^0 \pi^+ \pi^-$	$40 \pm 24 \pm 7$
$K^{*-}\rho^0\pi^+$	$60 \pm 21 \pm 9$

Understanding hadronic decays?

- Lipkin proposed heavy flavor decays in which a radiated W hadronizes to one particle and the remaining quarks hadronize into another particle might exhibit some universality
- Look at decays of the form $i \rightarrow f + W$ where $W \rightarrow a_1, \rho, \text{ or } \pi$

• Define
$$R(ifX) \equiv \frac{BR[i \to fX]}{BR[i \to f\rho]} \approx \left| \frac{W \to X}{W \to \rho} \right|^2$$

WIN '03

$$\begin{split} R(D^0K^-\pi) &\approx R(D^+\overline{K}{}^0\pi) \approx R(D^0K^{*-}\pi) \approx R(D^+\overline{K}{}^{*0}\pi) \approx R(B^0D^-\pi) \approx R(B^+D^0\pi) \approx R(B^0D^{*-}\pi) \approx R(B^+D^{*0}\pi) \\ R(D^0K^-a) &\approx R(D^+\overline{K}{}^0a) \approx R(D^0K^{*-}a) \approx R(D^+\overline{K}{}^{*0}a) \approx R(B^0D^-a) \approx R(B^+D^0a) \approx R(B^0D^{*-}a) \approx R(B^+D^{*0}a) \\ \end{split}$$

Rare decays

WIN '03

- Rare decays are window to new physics
- Standard Model predictions much below current sensitivity
- Some new physics predictions are within range

FOCUS 90% CL limits on $\Gamma(D^+ \rightarrow h^{\pm} \mu \mu)$

Use a new dual bootstrap technique to determine sensitivity/limits
 Use Wolfgang-Rolke tables to include error on background estimate

Charm mixing

- Like K^0 , B^0 , & B^0_s particles, D^0 particles can mix
- Mixing very suppressed in Standard Model \Rightarrow room for new physics
- Look for mixing in wrong sign semileptonic or hadronic decays
- Doubly Cabibbo Suppressed decays complicate hadronic decays
 Definitions:
- Definitions:
 - $x \equiv \frac{\Delta M}{\Gamma}$ via virtual intermediate states
 - $y \equiv \frac{\Delta\Gamma}{2\Gamma}$ via real intermediate states
 - $r_{mix} \equiv \frac{1}{2} (x^2 + y^2) = \frac{1}{2} (x'^2 + y'^2) x', y' \text{ rotated by } \delta$
- With CP conservation, the wrong-sign to right-sign decay rate is: $R_{WS}(t) = \left(R_{DCS} + \sqrt{R_{DCS}} y' \Gamma t + \frac{1}{4} \left(x'^2 + y'^2\right) \Gamma^2 t^2\right) e^{-\Gamma t}$

where the three terms come from DCS decays, interference, and mixing. In semileptonic mixing, only the mixing term appears.

Preliminary FOCUS semimuonic mixing

Reconstruct *v* using *D*⁰ mass and vertex locations
 Fit to proper time and *D*^{*+} - *D*⁰ mass difference

WIN '03

Preliminary FOCUS semimuonic mixing

 $D^0-\overline{D}^0$ Mixing Limits Preliminary FOCUS Kuv $r = \Delta \Gamma / 2\Gamma (\%)$ • Result is $r_{mix} =$ BaBar $K\pi$ $\left(-7.5 \begin{array}{c} +9.9 + 2.1 \\ -9.3 - 2.6 \end{array}\right) \times 10^{-4}$ E791 Klv CLEO $K\pi$ Average ΔΓ Obtain limit using Feldman–Cousins > suggestion for confidence intervals near a boundary ()Limit is $r_{mix} < 0.131\%$ @ 95% CL Plan to add electronic -5 mode soon Also working on hadronic $\delta_{K\pi} = 0^{\circ}$ assumed 95% C.L. Limits mixing analysis -10 7.5 10

Charm physics from FOCUS – p. 19

 $x = \Delta m / \Gamma$ (%)

WIN '03

Summary of FOCUS results

Shown here:

- FOCUS has nearly completed measuring every charm hadron lifetime (with by far the most precise measurement in every case)
- **FOCUS** continues to investigate high-multiplicity decays; historically not done at e^+e^- machines
- **FOCUS** has significantly lowered limits on $D^+ \rightarrow h^{\pm} \mu^{\pm} \mu^{\mp}$ decays and will continue with other rare decay searches
- **FOCUS** will provide competitive limits on charm mixing

Not shown here:

- FOCUS has the most precise measurements of $D^+ \rightarrow \overline{K}^{*0} \mu^+ \nu$ branching ratio and form factors and the first observation of S-wave interference in this channel
- **FOCUS** has also published many other branching ratios
- **FOCUS** is continuing studies of spectroscopy and charm producion

