CP/CPT Violation in Charm

Kevin Stenson — Vanderbilt University

Heavy Quarks & Leptons — 2002 Vietri sul Mare, Salerno, Italy — May 28–31, 2002

Talk Outline

I. Quick CP violation recap

- II. Blurb about E791, FOCUS, & CLEO experiments
- III. Recent direct CP violation search results
- IV. A search for CPT violation
- V. Summary & Future

CP violation generalities

Three types of CP violation

- **1** CP violation in mixing (indirect)
- **2** CP violation in decay (direct)
- **3** CP violation in decay/mixing interference (indirect or direct)

Current Status

- \bullet Experimentally, charm mixing is small \Rightarrow CP violation in mixing or interference is small
- Standard Model predictions for all types of charm CP violation are well below current sensitivities
- Some Standard Model extensions predict direct CP violation up to 1% (almost within reach)
- \Rightarrow Large window for new physics

CP violation generalities

Direct CP violation

- Only type of CP violation possible for charged mesons
- Requires two decay terms with different CP violating (weak) and different CP conserving (strong) phases
- Differing strong phases comes from final state interactions
- In Standard Model differing weak phases often come from tree level and penguin diagrams

• Measure:
$$A_{CP} \equiv \frac{\Gamma(D \rightarrow f) - \Gamma(\overline{D} \rightarrow \overline{f})}{\Gamma(D \rightarrow f) + \Gamma(\overline{D} \rightarrow \overline{f})}$$

• In fixed-target experiments (E791 & FOCUS), production asymmetries require normalizing by another (copious) mode, assumed to have no CP violation. Procedure also reduces systematic errors.

The usual suspects

E791:

- 500 GeV π^- beam on nucleon target
- \bullet Took data at Fermilab 1991–2

FOCUS:

- $\bullet \sim 180 \; {\rm GeV} \; \gamma$ beam on nucleon target
- \bullet Took data at Fermilab 1996–7

CLEO:

- Symmetric e^+e^- at $\Upsilon(4S)$
- \bullet Most data from CLEO II.V (1996–9)

 $D^+ \rightarrow K^0_S h^+ - \text{FOCUS}$

Branching Ratio Measurements:					
D^+ BR	FOCUS	PDG Average			
$\frac{\Gamma(\overline{K^0}\pi^+)}{\Gamma(K^-\pi^+\pi^+)}$	$(30.60 \pm 0.46 \pm 0.58)\%$	$(32.0 \pm 4.0)\%$			
$\frac{\Gamma(\overline{K^0}K^+)}{\Gamma(K^-\pi^+\pi^+)}$	$(6.04 \pm 0.35 \pm 0.35)\%$	$(7.7 \pm 2.2)\%$			
$\frac{\Gamma(\overline{K^0}K^+)}{\Gamma(\overline{K^0}\pi^+)}$	$(19.96 \pm 1.20 \pm 1.06)\%$	$(26.3 \pm 3.5)\%$			

Direct CP Violation search:

• Measure
$$A_{CP} = \frac{\eta(D^+ \rightarrow K_s h^+) - \eta(D^- \rightarrow K_s h^-)}{\eta(D^+ \rightarrow K_s h^+) + \eta(D^- \rightarrow K_s h^-)}$$

• Normalize to another mode to account for production asymmetries

• Use $D^{*+} \to D^0 \pi^+$ decays to distinguish D^0 from \overline{D}^0

CP violation in three-body decays

- Can look for CP violation integrated over phase space
- Can look for CP violation via effective two-body decays by cutting on resonances
- Can fit D and \overline{D} Dalitz plots separately and compare magnitudes and phases (most sensitive)

	· · · ·	
	E791	FOCUS
$\overline{A_{CP}(K^-K^+\pi^+)}$	$(-1.4 \pm 2.9)\%$	$(0.6 \pm 1.1 \pm 0.5)\%$
$A_{CP}(\phi\pi^+)$	$(-2.8 \pm 3.6)\%$	Dalitz analyses
$A_{CP}(K^*K^+)$	$(-1.0 \pm 5.0)\%$	in
$A_{CP}(\pi^+\pi^-\pi^+)$	$(-1.7 \pm 4.2)\%$	progress

 A_{CP} for $D^+ \to K^- K^+ \pi^+, \pi^- \pi^+ \pi^+$

• Will look for direct CP violation by comparing $D^+ \& D^-$ Dalitz plots

CLEO CP violation search in $D^0 \rightarrow K^- \pi^+ \pi^0$

$$A_{CP} = \int \frac{\left|M_{D^{0}}\right|^{2} - \left|M_{\overline{D}^{0}}\right|^{2}}{\left|M_{D^{0}}\right|^{2} - \left|M_{\overline{D}^{0}}\right|^{2}} dDP$$

 $= (-3.1 \pm 8.6)\%$ (not optimized to measure A_{CP})

CPT Violation

- Point particle Lorentz invariant field theories \Rightarrow CPT invariance
- Some Standard Model extensions need not be Lorentz-invariant
 - Example: strings are not point particles \Rightarrow can elude requirement
 - -Start with more fundamental theory operating at, e.g., M_{Plank}
 - At current energies have spontanteous symmetry breaking in which vacuum acquires quantities oriented in 4-D \Rightarrow violates particle Lorentz invariance (although not observer Lorentz invariance)
- One could find evidence for strings by precision tests of CPT and/or Lorentz invariance
- $\bullet \Rightarrow$ should search for CPT violation and Lorentz violation
- \bullet Limits have been set using neutral K and B mesons (mixing interferometry)
- No limits yet from charm system

Mostly follow formalism developed by Kostelecký (hep-ph/0104120)

• Standard effective Hamiltonian is rewritten:

$$\Lambda = M - \frac{1}{2}i\Gamma \qquad \Rightarrow \qquad \Lambda = \frac{1}{2}\Delta\lambda \begin{pmatrix} U + \boldsymbol{\xi} & VW^{-1} \\ VW & U - \boldsymbol{\xi} \end{pmatrix}$$

where U, V, W, ξ are complex and $\Delta \lambda = \Delta M - i \Delta \Gamma/2$

- The time-dependant right-sign $D^0 \to f$ decay probability, $P_f(t) = \frac{1}{2} |F|^2 e^{-\Gamma t} \left[\left(1 + |\boldsymbol{\xi}|^2 \right) \cosh \Delta \Gamma + \left(1 |\boldsymbol{\xi}|^2 \right) \cos \Delta M 2\Re(\boldsymbol{\xi}) \sinh \Delta \Gamma + 2\Im(\boldsymbol{\xi}) \sin \Delta M \right]$
- The time-dependant $\overline{D}^0 \to \overline{f}$ decay probability $\overline{P}_{\overline{f}}(t)$ is $P_f(t)$ with $\xi \to -\xi$ and $F \to \overline{F}$
- Form the asymmetry for right-sign decays:

$$A_{CPT}(t) = \frac{\overline{P}_{\overline{f}}(t) - P_f(t)}{\overline{P}_{\overline{f}}(t) + P_f(t)} = \frac{2\Re(\boldsymbol{\xi}) \sinh \Delta \Gamma t - 2\Im(\boldsymbol{\xi}) \sin \Delta M t}{\left(1 + |\boldsymbol{\xi}|^2\right) \cosh \Delta \Gamma t + \left(1 - |\boldsymbol{\xi}|^2\right) \cos \Delta M t}$$

• Taylor expand sin, sinh, cos, cosh to 1st order and use standard mixing variables $x \equiv \Delta M/\Gamma$, $y \equiv \Delta \Gamma/2\Gamma$. Then:

$$A_{CPT}(t) \approx \left[\Re(\boldsymbol{\xi}) y - \Im(\boldsymbol{\xi}) x\right] \Gamma t$$

CPT formalism continued...

- From above, $A_{CPT}(t) \approx [\Re(\boldsymbol{\xi}) y \Im(\boldsymbol{\xi}) x)] \Gamma t$
- Experimentally, $A_{CPT}(t') = \frac{N_{\overline{D}0}(t') N_{D0}(t')}{N_{\overline{D}0}(t') + N_{D0}(t')}$
- Slope of distribution gives $[\Re(\boldsymbol{\xi}) y \Im(\boldsymbol{\xi}) x]$

Lorentz invariance violating parameters

- \bullet In CPT and Lorentz violating extensions, CPT violating parameters (ξ) depend on lab momentum, orientation, and sidereal time
- Wind up with flavor dependant Lorentz violating coupling coefficients
- For FOCUS (a forward, fixed-target experiment):

$$\begin{aligned} \boldsymbol{\xi}(\hat{t},p) &= \frac{\gamma(p)}{\Delta\lambda} \Big[\Delta a_0 + \beta \Delta a_Z \cos \chi + \beta \sin \chi (\Delta a_Y \sin \Omega \hat{t} + \Delta a_X \cos \Omega \hat{t}) \Big] \\ &- \Omega \left(\hat{t} \right) \equiv \text{sidereal frequency (time)} \\ &- X, Y, Z \equiv \text{non-rotating coordinates; } Z \text{ along Earth's rotation axis} \\ &- \Delta\lambda = (x - iy)\Gamma \\ &- \gamma(p) = \sqrt{1 + p_D^2/M_D^2} \\ &- \beta = 1, \chi = 53^\circ \text{ for FOCUS} \end{aligned}$$

CPT Violation preliminary results – FOCUS

- $\Re(\xi)y \Im(\xi)x = 0.0083 \pm 0.0065 \pm 0.0041$
 - Limits depend on mixing parameters
 - Example: $x=0, y=1\% \Rightarrow$ $\Re(\xi) = 0.83 \pm 0.65 \pm 0.41$
- Lorentz invariance violating parameters:
 - Still under study
 - Expect limits on $\Delta a_0 + .6\Delta a_Z, \Delta a_X, \& \Delta a_Y$ in range of $\sim 10^{-15} \text{ GeV}$

Summary of CP (& CPT) violation searches

A_{CP} mode	E791(98) (%)	FOCUS(00,02) (%)	CLEO(01,02) (%)
$D^0 \rightarrow K^- K^+$	$-1.0 \pm 4.9 \pm 1.2$	$-0.1 \pm 2.2 \pm 1.5$	$0.0 \pm 2.2 \pm 0.8$
$D^0 \rightarrow \pi^- \pi^+$	$-4.9 \pm 7.8 \pm 3.0$	$4.8 \pm 3.9 \pm 2.5$	$1.9 \pm 3.2 \pm 0.8$
$D^0 \rightarrow \pi^0 \pi^0$			0.1 ± 4.8
$D^0 \rightarrow K^0_S K^0_S$			-23 ± 19
$D^0 \rightarrow K_S^0 \pi^0$			0.1 ± 1.3
$D^+ \rightarrow K_S^0 \pi^+$		$-1.6 \pm 1.5 \pm 0.9$	
$D^+ \rightarrow K_S^0 K^+$		$6.9 \pm 6.0 \pm 1.8$	
$D^0 \rightarrow K^- \pi^+ \pi^0$			$-3.1 \pm 8.6 \; (DP)$
$D^+ \rightarrow K^- K^+ \pi^+$	-1.4 ± 2.9	$0.6 \pm 1.1 \pm 0.5$	
$D^+ \rightarrow \phi \pi^+$	-2.8 ± 3.6		
$D^+ \rightarrow K^* K^+$	-1.0 ± 5.0		
$D^+ \rightarrow \pi^- \pi^+ \pi^+$	-1.7 ± 4.2		

• First CPT violation search in charm from FOCUS (preliminary) $-\Re(\xi) y - \Im(\xi) x = 0.0083 \pm 0.0065 \pm 0.0041$

Future of CP violation searches in charm

- Short term: < 1 year
 - $-\operatorname{FOCUS}$ is working on Dalitz analyses of 3-body D^+ decays such as $D^+\!\to\!K^-K^+\pi^+$ and $D^+\!\to\!\pi^-\pi^+\pi^+$
 - CLEO is working on Dalitz analyses of 3-body D^0 decays such as $D^0 \rightarrow K_S^0 \pi^+ \pi^-, D^0 \rightarrow \pi^- \pi^+ \pi^0, D^0 \rightarrow K_S^0 \pi^0 \pi^0$ plus D^+ modes
 - Belle and BaBar will improve on current limits?
- Medium term: 1–5 years
 - CLEO-c will be collecting ~ 30 million $D\overline{D}$ events at the $\psi(3770)$
 - Belle and BaBar will continue to provide excellent results
- Longer term: > 5 years
 - BTeV at the Fermilab Tevatron $(p\overline{p})$ will likely be the first experiment to reconstruct 1 billion charm decays