Hadronic Decays of Charm Particles

Kevin Stenson — Vanderbilt University

9th International Symposium on Heavy Flavor Physics Caltech, Pasadena, CA — September 10-13, 2001

Talk Outline

I. Motivation

- II. Description of E791, FOCUS, & SELEX experiments
- III. New branching ratio measurements
- IV. Analysis of resonant substructure in charm decays V. Conclusions

Motivation/Background

Hadronic decays are rich in information about QCD

- Hadronic decays give rise to difference between D^+ and D^0 lifetimes
- Suppression of $D^0 \to \pi \pi$ to $D^0 \to KK$ proved importance of final state interactions in charm decays
- Hadronic decays can provide information on relative strengths of decay diagrams (spectator, W exchange, annihilation, etc.)
- Resonant analyses of charm decays can also provide information on light resonances
- The charm sector is rich (maybe too rich) in hadronic decay modes

Accessing information from hadronic decays can be difficult

- Branching ratios are fairly simple to measure
- Resonant analyses of multi-body final states are not so easy
 - Resonant parameters often not well known
 - Quantum mechanical interferences complicates the analysis

E791, FOCUS, & SELEX Experiments

- Beams $500 \text{ GeV } \pi^ <180> \text{ GeV } \gamma$ $540-600 \text{ GeV } p, \Sigma^- \& \pi^-$
- E791 ran in 1991/2 SELEX & FOCUS in 1996/7
- All used segmented targets
- E791, FOCUS, & SELEX had 17, 16, & 38 Si planes for vertexing and tracking
- Wire chambers and magnets for tracking & momentum
- E791 (FOCUS) used 2(3) threshold Čerenkov counters; SELEX used a RICH

- E791 and FOCUS used EM and hadronic calorimeters to loosely trigger on hadronic events slightly enriched with charm. Goal is charm production and decays.
- SELEX used online vertex trigger based on miss distance. Goal is high- x_F baryons, especially charm-strange baryons.

Branching Ratios (D^0

• Deviations from naïve weak prediction give information about QCD

 $\overline{KKK\pi}$ Yield = 18.4 \pm 5.3

1.85

1.95

Mass (GeV/c²)

1.9

Intries per 0.005 GeV/c

E791

1.75

1.8

1.85

1.9

1.95

Mass (GeV/c^2)

- Use the decay BR $\left(\frac{D^0 \rightarrow K^- K^+ K^- \pi^+}{D^0 \rightarrow K^- \pi^+ \pi^- \pi^+}\right)$ to measure $s\bar{s}$ popping penalty
- E687: $0.0028 \pm 0.0007 \pm 0.0001$
- E791: $0.0054 \pm 0.0016 \pm 0.0008$
- FOCUS preliminary: 0.00306 ± 0.00047

Branching Ratios $(D^+, D_s^+ \to K_s h^+ h^- h^+)$

(b) $\Gamma(D_s^+ \to \overline{K^0} K^+ \pi^- \pi^+)$ FOCUS: $(2.5 \pm 0.9)\%$ Previous: < 2.8%

 $D^+ \rightarrow K_s h^+ - \text{FOCUS preliminary}$

Branching Ratio Measurements:

D^+ BR	FOCUS	PDG Average
$\frac{\Gamma(\overline{K^0}\pi^+)}{\Gamma(K^-\pi^+\pi^+)}$	$(30.60 \pm 0.46 \pm 0.58)\%$	$(32.0 \pm 4.0)\%$
$\frac{\Gamma(\overline{K^0}K^+)}{\Gamma(K^-\pi^+\pi^+)}$	$(6.04 \pm 0.35 \pm 0.35)\%$	$(7.7 \pm 2.2)\%$
$\frac{\Gamma(\overline{K^0}K^+)}{\Gamma(\overline{K^0}\pi^+)}$	$(19.96 \pm 1.20 \pm 1.06)\%$	$(26.3 \pm 3.5)\%$

Direct *CP* Violation search:

• Measure
$$A_{CP} = \frac{\eta(D^+ \rightarrow K_s h^+) - \eta(D^- \rightarrow K_s h^-)}{\eta(D^+ \rightarrow K_s h^+) + \eta(D^- \rightarrow K_s h^-)}$$

• Normalize to another mode to account for production asymmetries

CP AsymmetryFOCUS $A_{CP}(K_s\pi^+)$ w.r.t. $K^-\pi^+\pi^+$ (-1.6±1.5±0.9)% $A_{CP}(K_sK^+)$ w.r.t. $K^-\pi^+\pi^+$ (6.9±6.0±1.8)% $A_{CP}(K_sK^+)$ w.r.t. $K_s\pi^+$ (7.1±6.1±1.4)%

Branching Ratio $(\Xi_c^+ \to p K^- \pi^+)$

- \bullet Only Cabibbo-suppressed decay of a charm-strange baryon ever seen
- First observed by SELEX; also seen by FOCUS

SELEX: Yield $(\Xi_c^+ \rightarrow pK^-\pi^+) = 150\pm 22$ $\frac{\Gamma(\Xi_c^+ \rightarrow pK^-\pi^+)}{\Gamma(\Xi_c^+ \rightarrow \Xi^-\pi^+\pi^+)} = (20\pm 4\pm 2)\%$

FOCUS:
Yield
$$(\Xi_c^+ \to pK^-\pi^+) = 202 \pm 35$$

 $\frac{\Gamma(\Xi_c^+ \to pK^-\pi^+)}{\Gamma(\Xi_c^+ \to \Xi^-\pi^+\pi^+)} = (23.4 \pm 4.7 \pm 2.2)\%$

Resonance Analyses (Dalitz Plot)

- For three-body final states, a Dalitz plot shows resonant contributions
- Fitting the Dalitz plot requires a coherent analysis allowing for interferences, different relative phases, etc.

Dalitz plot analyses shown:

- $D^+ \to K^+ K^- \pi^+$ (FOCUS)
- $D_s^+ \to \pi^+ \pi^- \pi^+$ (E791 & FOCUS)
- $D^+ \rightarrow \pi^+ \pi^- \pi^+$ (E791)
- $D^+ \to K^- \pi^+ \pi^+$ (E791)
- $D^+ \to K^+ \pi^- \pi^+$ (FOCUS)
- $D_s^+ \to K^+ \pi^- \pi^+$ (FOCUS)

FOCUS $D^+ \to K^- K^+ \pi^+$ preliminary analysis

• Will look for direct CP violation by comparing $D^+ \& D^-$ Dalitz plots

$$D_s^+ \to \pi^- \pi^+ \pi^+$$
 Dalitz plot analysis

Cabibbo favored but 2 strange quarks disappear??

Interaction can proceed in two ways:

- $f_0(980)$ is an example of a resonance which couples to $K\overline{K}$ and $\pi\pi$
- Significant $\rho(770)$ would indicate annihilation diagram contributions

 $D_s^+ \to \pi^- \pi^+ \pi^+$ preliminary analysis Mode Fraction (%)Phase $(^{\circ})$ 90 80 $f_0(980)\pi^+$ 94. $\overline{4\pm 2.5}$ 0 (fixed)200 70 60 25.5 ± 4.4 246 ± 4 NR 50 $f_2(1270)\pi^+$ 9.8 ± 1.2 140 ± 6 40 30 $\rho(1450)\pi^+$ 4.1 ± 0.7 188 ± 14 20 10 $S_0(1475)\pi^+$ 17.4 ± 2.2 250 ± 4 O **x** mass projection $1.5 m(\pi\pi)^2 \log^2$ Use data to measure parameters: 60 50 $S_0(1475)$ 40

 $M_{S_0(1475)} = 1473 \pm 8 \text{ MeV}/c^2$ $\Gamma_{S_0(1475)} = 112 \pm 17 \text{ MeV}/c^2$

 $f_0(980)$ in K-matrix formalism $M_{f_0(980)} = 963 \pm 6 \text{ MeV}/c^2$ $\Gamma_{f_0(980)} = 297 \pm 92 \text{ MeV}/c^2$ $\gamma_{KK}^2/\gamma_{\pi\pi}^2 = 2.09 \pm 0.53$

 $f_0(980)$ converted to standard Breit-Wigner $M_{f_0(980)} = 982 \text{ MeV}/c^2$ $\Gamma_{f_0(980)} = 89 \text{ MeV}/c^2$

E791 $D^+, D^+_s \to \pi^- \pi^+ \pi^+$ analysis

E791
$$D_s^+ \rightarrow \pi^- \pi^+ \pi^+$$
 resonant analysis

- Fit for resonant amplitudes and phases
- Large errors on $f_0(980)$ and $f_0(1370)$ parameters \Rightarrow fit for these parameters

$f_0(1370)$ parameters

 $M_{f_0(1370)} = 1434 \pm 18 \pm 9 \text{ MeV}/c^2$ $\Gamma_{f_0(1370)} = 172 \pm 32 \pm 6 \text{ MeV}/c^2$

 $f_0(980)$ parameters (coupled channel Breit Wigner) $M_{f_0(980)} = 977 \pm 3 \pm 2 \text{ MeV}/c^2$ $g_{\pi} = 0.09 \pm 0.01 \pm 0.01$ $g_{\kappa} = 0.02 \pm 0.04 \pm 0.03$

 $f_0(980)$ parameters (standard Breit Wigner)

 $M_{f_0(980)} = 975 \pm 3 \pm 2 \text{ MeV}/c^2$ $\Gamma_{f_0(980)} = 44 \pm 2 \pm 2 \text{ MeV}/c^2$

E791 $D^+ \rightarrow \pi^- \pi^+ \pi^+$ resonant analysis

2.5 3 m²_{ππ}(GeV²/c⁴)

2.5 3m²_{ππ}(GeV²/c⁴)

 $206 \pm 8 \pm 5$

 $57\pm20\pm6$

 $165 \pm 11 \pm 3$

 $105 \pm 18 \pm 1$

 $319 \pm 39 \pm 11$

a) No
$$\sigma$$
 in model (CL = 10^{-5})

b)
$$\sigma$$
 in model (CL = 75%)
 $M_{\sigma} = 478^{+24}_{-23} \pm 17 \text{ MeV}/c^2$
 $\Gamma_{\sigma} = 324^{+42}_{-40} \pm 21 \text{ MeV}/c^2$

a) No σ in	n model (CI	$L = 10^{-5}$)	(+)160 (+)140 (+)120 (+)120 (+)140 (+)120 (+)140 (+	\mathbb{I}^{\dagger}	□) • <i>σ</i> • • • • • • • • • • • • • • • • • • •
			0 0.5	1 1.5	2 2.5 m² _{ππ} (GeV
b) σ in mo $M_{\sigma} = 4$	odel (CL = $178^{+24}_{-23} \pm 17$	$75\%)$ MeV/ c^2	(+) (+) (+) (+) (+) (+) (+) (+) (+) (+)	σ in	ncluded
$\Gamma_{\sigma} = 32$	$24^{+42} + 21$	MeV/c^2	40 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	╵ ^{┿┰} ┽ [╵] ┿ [┿] ┿ [┿] ┵ ^{┿┿} ┿ [┿] ┿ [┿] ┿ [┿] ┿ [┿]	╪ ┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿
10 02	-40 - 40		$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	1 1.5	2 2.5 m ² ππ(GeV
	(a)			(b)	
Mode	Fraction(%)	Phase (°)	Mode	Fraction (%)	Phase (°)
			$\sigma\pi^+$	$46.3 \pm 9.0 \pm 2.1$	$206 \pm 8 \pm 5$
$ ho(770)\pi^+$	20.8 ± 2.4	0 (fixed)	$ ho(770)\pi^+$	$33.6 \pm 3.2 \pm 2.2$	0 (fixed)
NR	38.6 ± 9.7	150 ± 12	NR	$7.8 \pm 6.0 \pm 2.7$	$57 \pm 20 \pm 6$
$f_0(980)\pi^+$	7.4 ± 1.4	152 ± 16	$f_0(980)\pi^+$	$6.2 \pm 1.3 \pm 0.4$	$165 \pm 11 \pm$
$f_2(1270)\pi^+$	6.3 ± 1.9	103 ± 16	$f_2(1270)\pi^+$	$19.4 \pm 2.5 \pm 0.4$	$57\pm8\pm3$
$f_0(1370)\pi^+$	10.7 ± 3.1	143 ± 10	$f_0(1370)\pi^+$	$2.3 \pm 1.5 \pm 0.8$	$105 \pm 18 \pm$
$\rho(1450)\pi^+$	22.6 ± 3.7	46 ± 15	$ \rho(1450)\pi^+ $	$0.7 \pm 0.7 \pm 0.3$	$319 \pm 39 \pm$

FOCUS $D^+ \to K^+ \pi^- \pi^+$ preliminary analysis

Doubly Cabbibo suppressed decay

FOCUS $D_s^+ \to K^+ \pi^- \pi^+$ preliminary analysis

Singly Cabbibo suppressed decay

- You can never have enough statistics in charm hadronic decays
- Charm hadronic decays can be used to investigate light resonances:

	E791		FOCUS		
Resonance	M (MeV/ c^2)	$\Gamma({ m MeV}/c^2)$	M (MeV/	$(c^2) \Gamma (\text{MeV}/c^2)$	
σ	$478^{+24}_{-23}\pm17$	$324_{-40}^{+42} \pm 21$			
κ	$797 \pm 19 \pm 42$	$410{\pm}43{\pm}85$			
$f_0(980)$	$975 \pm 3 \pm 2$	$44\pm2\pm2$	982	89	
$f_0(1370)/S_0(1475)$	$1434 \pm 18 \pm 9$	$172 \pm 32 \pm 6$	$1473 \pm$	$8 112 \pm 17$	
$K_0^*(1430)$	$1459 \pm 7 \pm 6$	$175 \pm 12 \pm 12$			

- Exploring the nature of final-state interactions is ongoing
- Evidence for W-annihilation contributions seems to be lacking so far
- Resonant analysis will allow direct CP violation searches of multi-body decay modes
- FOCUS will have its hands full analyzing many decay modes
- Hopefully the e^+e^- experiments will also contribute