Particles unseen in FOCUS

Kevin Stenson

stenson@fnal.gov

University of Colorado

DPF 2004: Riverside, CA

The search list

What was searched for:

- S = -1 pentaquark $\Theta(1540)^+$ with quark content $uudd\bar{s}$
- S = -2 pentaquark $\phi(1860)^{--}$ with quark content $\bar{u}ddss$
- Charm pentaquark $\Theta_c(3100)^0$ with quark content $uudd\bar{c}$
- Double charm baryons Ξ_{cc} with quark content ccu and ccd

Please note the following:

- All results are preliminary
- Charge conjugates are always implied

The FOCUS experiment

- **FOCUS** took data in the Fermilab fixed-target run of 1996-7
- e^{\pm} at ~300 GeV bremsstrahlung on lead target to create photon beam
- Photons interact in BeO targets
- Charged particles tracked and momentum analyzed with silicon strips, wire chambers, and two magnets
- Three multicell threshold Čerenkov counters for particle ID
- Trigger required ~35 GeV of energy in the hadron calorimeter
- 7 billion hadronic events on tape

Evidence for $\Theta^+(uudd\bar{s})$

FROM

FOCUS search for new particles – p. 4

Summary of Θ^+ mass measurements

FOCUS analysis: $\Theta(1540)^+ \rightarrow pK_S^0$ search

- Search for $\Theta^+ \to pK_S^0$ and compare to $K^{*+}(892) \to K_S^0 \pi^+$ and $\Sigma(1385)^{\pm} \to \Lambda^0 \pi^{\pm}$ (similar topology)
- Reconstruct $K_S^0 \rightarrow \pi^+ \pi^-$ and $\Lambda^0 \rightarrow p \pi^-$
- Use Čerenkov ID on fast track to separate K_S^0 and Λ^0
- Remaining good quality tracks must be consistent with one vertex (CL>1%) suppressing charm decays and reinteractions
- Various minor clean up cuts applied to vees and charged tracks
- Mass of K_S^0 or Λ^0 candidate within 2.5 σ of nominal mass
- Very stringent Čerenkov ID cut applied to proton in pK_S^0 (misid ~0)

Vee samples

FROM

FOCUS search for new particles – p. 7

Fitting mass plots

- Mass plots are fit with Breit-Wigner convoluted with the Gaussian resolution (from Monte Carlo)
- $K^*(892)$ and $\Sigma(1385)$ should be P-wave but best fit is simple S-wave Breit-Wigner with energy independent width
- Best (of tried) background shape is $aq^b \exp(cq + dq^2 + eq^3 + fq^4)$

FOCUS search for new particles – p. 8

$K^*(892)^+ \rightarrow K^0_S \pi^+ \text{ and } \Sigma(1385)^\pm \rightarrow \Lambda \pi^\pm \text{ signals}$

$\Theta^+ \rightarrow p K_S^0$ search

FOCUS search for new particles – p. 10

Limit on $\Theta^+ \rightarrow pK_S^0$ yield

Fit for signal in $1 \text{ MeV}/c^2$ steps from 1511 to 1560 MeV/ c^2

Find where $-2 \ln \mathcal{L}$ changes by 3.84 w.r.t minimum as yield is varied (allowing other variables to be continually minimized)

DPF 2004

Corrected yields

Particle Decay	GeV/c	$\operatorname{Acc} \times \epsilon$	B.R. correction	Reconstructed Yield/Limit	Corrected Yield/Limit
$\frac{1}{K^*(892)^+ \to K_S^0 \pi^+}$	19	1.83%	$0.686 \times 0.5 \times 0.666$	8.3×10^{6}	2.0×10^{9}
$\Sigma(1385)^+ \rightarrow \Lambda \pi^+$	10	0.27%	$0.639 \! imes \! 0.88$	9.2×10^4	$6.1 imes 10^7$
$\Sigma(1385)^- \rightarrow \Lambda \pi^-$	10	0.27%	$0.639 \! imes \! 0.88$	14.6×10^4	9.6×10^7
$\Theta(1540)^+ \rightarrow pK_S^0$					
$\Gamma = 0 \text{ MeV}/c^2$	12	0.39%	$0.686\! imes\! 0.5\! imes\! 0.5$	$<\!\!695$	${<}1.0{\times}10^6$
$\Gamma = 15 \; \mathrm{MeV}/c^2$	12	0.39%	$0.686\!\times\!0.5\!\times\!0.5$	<2154	${<}3.2{\times}10^6$

Decay	B.R.
$\overline{K^*(892)^+ \to \overline{K}{}^0\pi^+}$	66.6%
$K_S^0 \rightarrow \pi^+ \pi^-$	68.6%
$\overline{K}^{0} \rightarrow K^{0}_{S}$	50.0%
$\Lambda \rightarrow p\pi^{-}$	63.9%
$\Sigma(1385)^{\pm} \rightarrow \Lambda \pi^{\pm}$	88.0%
$\Theta(1540)^+ \rightarrow p\overline{K}^0$	50.0%

DPF 2004

Events generated by minimum bias PYTHIA γ -N interactions with bremsstrahlung photon spectrum

$$\Theta(1540)^+$$
 generated as $\Sigma(1385)^+$

Limits on $\Theta(1540)^+$ **production**

FURNIE

FOCUS search for new particles – p. 13

S = -2 pentaquarks ($\phi(1860)^{--}$)

FOCUS analysis: $\phi(1860)^{--} \rightarrow \Xi^{-}\pi^{-}$ search

FOCUS search for new particles – p. 15

Results of FOCUS search for $\phi(1860)^{--}$

FORME

FOCUS search for new particles – p. 16

Limits on $\phi(1860)^{--}$ production

- Using PYTHIA, generate Monte Carlo samples of $\Xi(1530)^0$ and of $\phi(1860)^{--}$ (using $\Xi(1530)^0$)
- Average momentum is 15 GeV/*c*
- Efficiency ratio is $\frac{\epsilon(\phi(1860)^{--} \rightarrow \Xi^{-}\pi^{-})}{\epsilon(\Xi(1530)^{0} \rightarrow \Xi^{-}\pi^{+})} = 0.78$
- Thus, for a $\phi(1860)^{--}$ produced like $\Xi(1530)^0$ we obtain the limits:
- $\frac{\sigma(\phi(1860)) \times \mathrm{BR}(\phi(1860) \to \Xi^{-}\pi^{-})}{\sigma(\Xi(1530))} < 0.25\% @95\% \operatorname{CL} \text{ for } \Gamma \!=\! 0 \operatorname{MeV}$
- $\frac{\sigma(\phi(1860)) \times \mathrm{BR}(\phi(1860) \to \Xi^{-}\pi^{-})}{\sigma(\Xi(1530))} < 0.37\% @ 95\% \,\mathrm{CL} \text{ for } \Gamma \!=\! 15 \,\mathrm{MeV}$

Sharp contrast to NA49 which seems to be $\gtrsim 50\%$

Charm pentaquarks

- H1 at HERA reported a > 6σ significant particle at 3.099 GeV/ c^2 decaying to $D^{*-}p$
- Using a D^{*+} sample $10 \times$ larger and much cleaner, FOCUS searched for this particle
- **FOCUS** also investigated D^+p decays
- Standard fixed-target charm selection criteria used for D^{*+} and D^+ reconstruction
- p candidate must originate from production vertex and be positively identified by Čerenkov system

FOCUS finds no charm pentaquarks

FOCUS search for new particles – p. 19

Double charm baryons

SELEX has reported various observations of double charm baryons. SELEX uses hadron beams and only reconstructs high x_F particles.

FOCUS analysis:

- Topology consists of three vertices
- Use candidate driven algorithm
- Reconstruct D^+ , D^0 , or Λ_c requiring a good vertex
- Add tracks to charm vector to search for Ξ_{cc} decay requiring a good vertex
- Use Ξ_{cc} vector to find production vertex
- Require separation between all vertices
- Use Čerenkov system to positively identify protons and kaons

FOCUS Ξ_{cc} search results

FOCUS search for new particles -p. 21

Double charm baryon production compared

Decay Mode	$\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$		$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$		
Experiment	FOCUS	SELEX	FOCUS	SELEX	
Ξ_{cc} Events	<2.21 @ 90%	15.8	<2.21 @ 90%	8	
Reconstructed Λ_c	$19,444 \pm 262$	1650	$19,444\pm262$	1650	
Relative Efficiency	5%	10%	13%	5%	
Ξ_{cc}/Λ_c^+	<0.23% @ 90%	9.6%	<0.09% @ 90%	9.7%	
$\frac{\text{SELEX}}{\text{FOCUS}}$ Rel $\frac{\Xi_{cc}}{\Lambda_c}$ Prod	>42 @ 90	9%	>111 @ 90%		

If the $\Lambda_c^+ K^- \pi^+ (\Lambda_c^+ K^- \pi^+ \pi^+)$ signal is real, SELEX produces at least 42 (111) times more Ξ_{cc} baryons relative to Λ_c than FOCUS

Summary of the FOCUS searches

- No evidence for $\Theta(1540)^+ \rightarrow pK_S^0$ but reconstructs 8 million $K^*(892)^+ \rightarrow K_S^0 \pi^+$ and 240,000 $\Sigma(1385)^\pm \rightarrow \Lambda^0 \pi^\pm$ in similar decay modes
- No evidence for $\phi(1860)^{--} \rightarrow \Xi^{-}\pi^{-}$ but reconstructs 60,000 $\Xi(1530)^{0} \rightarrow \Xi^{-}\pi^{+}$, approximately 1,000 times more than the observing experiment
- No evidence for a charm pentaquark decaying to $D^{*-}p$ or D^-p with a factor of 10 more D^{*+} decays than the observing experiment
- No evidence for double charm baryons with a factor of 10 more Λ_c decays than the observing experiment

