Recent Results in Charm Decays

Kevin Stenson stenson@fnal.gov

University of Colorado – Boulder

APS/DPF April 2003 Meeting

APS/DPF 2003

Outline

- Introduction to Charm
- Introduction to Charm Experiments
- Lifetimes
- Hadronic Decays
- Semileptonic Decays
- Rare Decays
- Mixing
- Summary

Why charm?

Charm has been around 30 years but, like strange physics, is still relevant

Window to new physics

- Standard model rates for rare decays, CP violation, mixing are very low
- With current experiments, observation of CP violation, rare decays, or mixing ⇒ new physics
- Provides information about QCD
 - Measurements of production characteristics, lifetimes, branching ratios, subresonant analyses, etc. provide insight into QCD

Needed for b physics

- Many b particles decay to charm so branching ratios, lifetimes, etc. needed for accurate b results
- Experimental techniques can be developed in charm (lifetime measurement, Dalitz plot analyses, etc.)
- Heavy Quark Effective Theory often needs charm to bootstrap to b physics

Summary of relevant experiments

- E687, E791, FOCUS, and SELEX are Fermilab fixed-target experiments using γ , π^- , γ , and Σ^- beam particles. These experiments have excellent particle ID and vertexing.
- BaBar & Belle (CLEO) use asymmetric (symmetric) e^+e^- collisions at and below the $\Upsilon(4S)$ (10.58 GeV). Backgrounds are naturally low in these experiments.
- CDF is a Fermilab collider experiment using $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The charm cross section is very high making up for not being tuned for charm work. Run II started about 1 year ago.
- BES utilizes a τ -charm factory (symmetric e^+e^- collider operating at $\sqrt{s} = 3 5$ GeV).

Charm meson lifetimes

- World avg (FOCUS+PDG) gives ≈1% measurements of all charm meson lifetimes
- $\tau_{D^+}/\tau_{D^0} = 2.54 \pm 0.02 \Rightarrow$ large destructive interference
- $\tau_{D_s}/\tau_{D^0} = 1.22 \pm 0.01 \Rightarrow$ evidence for weak annihilation?

Charm baryon lifetimes

• Λ_c^+ PDG error dominated by 2.7 σ FOCUS/CLEO discrepancy. Systematic effect for short lived particles?

 $\tau_{\Omega_c^0} \approx 1/15 \times \tau_{D^+} \approx 1/3 \times \tau_{\Lambda_c^+}$; need boost & precise vertexing

Hadronic decays

Hadronic decays are rich in information about QCD

- Hadronic decays responsible for D^+ and D^0 lifetime difference
- Suppression of $D^0 \rightarrow \pi^- \pi^+$ to $D^0 \rightarrow K^- K^+$ proved importance of final state interactions in charm decays
- Hadronic decays can provide information on relative strengths of decay diagrams (spectator, W exchange, annihilation, etc.) and post-decay hadronization
- Analysis of charm decays can provide information on light resonances
- The charm sector is rich in hadronic decay modes

Accessing information from hadronic decays can be difficult

- Branching ratios are fairly simple to measure
- Resonant analyses of multi-body final states are not so easy
 - Resonance parameters often not well known
 - Quantum mechanical interferences complicates the analysis

APS/DPF 2003

Prelim FOCUS $D^0 \rightarrow h^+h^-h^+h^-$ results

 $(2.97 \pm 0.10(stat.))\%$ $(3.34 \pm 0.28)\%$

 $(8.66 \pm 0.12(stat.))\%$

 $\begin{array}{c} D^0 \longrightarrow K^- \pi^+ \pi^- \pi^+ \\ D^0 \longrightarrow \pi^- \pi^+ \pi^- \pi^+ \end{array}$

 $\Gamma(D^0 \rightarrow K^- \pi^+ \pi^- \overline{\pi^+})$

APS/DPF 2003

Recent Results in Charm Decays – p. 8

 $(9.8 \pm 0.6)\%$

$D^0 \rightarrow h^+ h^-$ decays

• CDF triggers on 2 displaced tracks (SVT) \Rightarrow lots of charm (0.45 million $D^0 \rightarrow K^- \pi^+$ in 65 pb⁻¹)

From E791, CLEO, & FOCUS: $\left\langle \frac{\Gamma(D^0 \to K^- K^+)}{\Gamma(D^0 \to \pi^- \pi^+)} \right\rangle = 2.83 \pm 0.09;$ Expect ~1.3 \Rightarrow strong example of final state interactions

APS/DPF 2003

E791 $D^+, D_s^+ \rightarrow h^+h^-h^+$ **Dalitz plot**

E791 uses high statistics samples to measure parameters of light mesons

Resonance	M (MeV/ c^2)	Γ (MeV/ c^2)	Decay Mode
σ	$478^{+24}_{-23}\pm17$	$324_{-40}^{+42}\pm21$	$D^+ \rightarrow \pi^+ \pi^- \pi^+$
κ	$797 \pm 19 \pm 42$	$410 \pm 43 \pm 85$	$D^+ \rightarrow K^- \pi^+ \pi^+$
$f_0(980)$	$975 \pm 3 \pm 2$	$44 \pm 2 \pm 2$	$D_s^+ \rightarrow \pi^+ \pi^- \pi^+$
$f_0(1370)$	$1434 \pm 18 \pm 9$	$172 \pm 32 \pm 6$	$D_s^+ \rightarrow \pi^+ \pi^- \pi^+$
$K_0^*(1430)$	$1459 \pm 7 \pm 6$	$175 {\pm} 12 {\pm} 12$	$D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$

σ required by D⁺→π⁺π⁻π⁺: fit CL 10⁻⁵ (no σ) ⇒ 75% (with σ)
 κ required by D⁺→K⁻π⁺π⁺: fit CL 10⁻¹¹ (no κ) ⇒ 95% (with κ); also reduces mysterious nonresonant contribution from 90% to 13%
 All resonances fit as Breit–Wigner except f₀(980)

Recent Results in Charm Decays – p. 10

APS/DPF 2003

$D^+, D_s^+ \rightarrow h^+ h^- h^+$ continued

FOCUS is a similar experiment to E791 with 2.5–10 times more data

- Similar $\pi^+\pi^-\pi^+$ Dalitz plots observed
- Investigating fitting with K-matrix instead of isobar model
 - Allows coupled channel analysis
 - Allows determination of "true" pole parameters (not just observed Breit-Wigner parameters)
 - Can incorporate information from strong scattering experiments

Anisovich & Sarantsev parameterize $IJ^{PC} = 00^{++}$ particles, $f_0(980), f_0(1300), f_0(1500), f_0(1750), f_0(1200 - 1600)$. Using this parameterization, and adding in vector and tensor particles, one can fit the $D^+ \rightarrow \pi^+ \pi^- \pi^+$ Dalitz plot.

CLEO did not see evidence for κ in D⁰→K⁻π⁺π⁰ decays
 Babar and Belle are starting to do Dalitz plot analyses

APS/DPF 2003

Preliminary BES σ & κ results

Preliminary BES results indicate significant contributions from σ and κ in $J/\psi \rightarrow \omega \pi^+ \pi^-$ and $J/\psi \rightarrow \overline{K}^* (892)^0 K^+ \pi^-$ decays

- Low mass enhancement not due to background or phase space
- Improves $J/\psi \rightarrow \omega \pi^+ \pi^-$ fit by >20 σ ; other spins are >20 σ worse
- Improves $J/\psi \to \overline{K}^{*0}K^+\pi^-$ fit by $\sim 20\sigma$; other spins are $\gtrsim 9\sigma$ worse

APS/DPF 2003

More on σ and κ

- CLEO finds $\tau^- \rightarrow \nu_{\tau} \pi^- \pi^0 \pi^0$ decays are dominated by a_1^- decays of which ~15% are to σ : $M_{\sigma} = 555 \,\text{MeV}/c^2$, $\Gamma_{\sigma} = 540 \,\text{MeV}/c^2$
- Ishida *et al.* (via PDG) find $M_{\sigma} = 563 \pm 60 \text{ MeV}/c^2$, $\Gamma_{\sigma} = 372 \pm 230 \text{ MeV}/c^2$ from reanalyzed Υ' and $J/\psi^{(\prime)}$ decays.

Summary of recent results on mass & width of σ & κ

Effect of σ on $g_{\mu} - 2$

- Narison finds σ can significantly affect theoretical calculations for muon anomalous magnetic moment, $a_{\mu} \equiv (g_{\mu} 2)/2$
- Recent comparisons of a_{μ} between theory and data indicate a 3.0σ or 0.9σ difference depending on whether e^+e^- annihilation or τ decay data is used in theory
- Narison finds including effects of the σ reduces the difference to 1.6σ or -0.2σ
- σ contribution introduces uncertainties larger than the old theoretical uncertainties due to lack of knowledge of M_{σ} and $\Gamma(\sigma \rightarrow \gamma \gamma, e^+e^-)$
- Need to learn more about the σ particle!

New scalar in $D^+ \rightarrow K^- \pi^+ \mu^+ \nu$ decays?

FOCUS analysis:

- FOCUS has large D^+ $K^{-}\pi^{+}\mu^{+}\nu$ sample
- Observe an asymmetry in $\cos \theta_V$ which depends on the $K^-\pi^+$ mass
- Due to s-wave interference, $\delta = 45^{\circ}$
- Also in LASS $K\pi$ scattering
- κ unlikely; need extra phase shift

Recent Results in Charm Decays – p. 15

1.0

APS/DPF 2003

Recent $D^+ \to \overline{K}^{*0} \ell^+ \nu$ results

Branching ratio: (FOCUS includes effect of scalar interference)

Form factors: (FOCUS includes effect of scalar interference)

Rare decays

- Rare decays are window to new physics
- Standard Model predictions much below current sensitivity
- Some new physics predictions are within range

FOCUS preliminary 90% CL limits on $\Gamma(D^+ \rightarrow h^{\pm} \mu \mu)$

Use a new dual bootstrap technique to determine sensitivity/limits
 Use Wolfgang-Rolke tables to include error on background estimate

APS/DPF 2003

$D^0 \rightarrow \mu^+ \mu^-, \gamma \gamma$ searches

APS/DPF 2003

Charm mixing

- Like K^0 , B^0 , & B^0_s particles, D^0 particles can mix
- Mixing very suppressed in Standard Model \Rightarrow room for new physics
- Look for mixing in wrong sign semileptonic or hadronic decays
- Doubly Cabibbo Suppressed decays complicate hadronic decays
 Definitions:
 - $x \equiv \frac{\Delta M}{\Gamma}$ via virtual intermediate states
 - $y \equiv \frac{\Delta \overline{\Gamma}}{2\Gamma}$ via real intermediate states
 - $r_{mix} \stackrel{\text{21}}{\equiv} \frac{1}{2} (x^2 + y^2) = \frac{1}{2} (x'^2 + y'^2) x', y' \text{ rotated by } \delta$
- With CP conservation, the wrong-sign to right-sign decay rate is: $R_{WS}(t) = \left(R_{DCS} + \sqrt{R_{DCS}} y' \Gamma t + \frac{1}{4} (x'^2 + y'^2) \Gamma^2 t^2 \right) e^{-\Gamma t}$

where the three terms come from DCS decays, interference, and mixing. In semileptonic mixing only the mixing term appears.

Charm mixing results

APS/DPF 2003

Charm mixing results continued

- E791 semileptonic mixing result measures $r_{mix} \equiv 1/2 (x^2 + y^2).$
- CLEO hadronic mixing results allowing or not allowing CP violation. Fit to x' and y'. Contour from scanning $\Delta \mathcal{L}$.
- BaBar CP conserving hadronic mixing results with statistical & statistical plus systematic errors. Fit to x², y'. Contour from mini-MC frequentist approach.
- FOCUS, CLEO, BaBar, and Belle are all investigating mixing using semileptonics and various hadronic modes.

Some results which were missed

- See sessions P12 and C12 for a full list
- Babar results
 - Three-body D decays C12.004
- Belle results
 - **J**/ $\psi c\bar{c}$ excess and double charmonium cross sections **P12.008**
 - Ω_c mass, semileptonic decay, production **P12.001**
- CLEO results
 - $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^- \pi^0$ observation **P12.015**
 - $D_s \rightarrow \mu \nu, \phi \pi$ branching ratios C12.006, C12.007
 - Dalitz plot: $D^0 \to K^0_S \pi^0 \pi^0, K^- K^+ \pi^0$ C12.001, C12.009
 - $\square D_s \rightarrow \eta \ell \nu, \Lambda_c^+ \rightarrow \Lambda e \nu \text{ form factors} \mathbf{C12.005, P12.014}$
 - $\blacksquare D^+ \to \pi^+ \pi^0, K_S^0 K^+, K^+ \pi^0 \text{ decays} \textbf{C12.008}$
- CDF results
 - Charm production results C12.003
- **FOCUS** results
 - $\square D^0 \to K^- \pi^+ \pi^- \pi^+ \pi^- \pi^+ \text{ decays} \textbf{C12.010}$

Future of charm

- FOCUS: Will continue to analyze semileptonics, baryon decays, resonant analyses of hadronic decays, etc.
- **SELEX:** Many interesting production studies to come.
- Babar & Belle: Continuing to take data. With large, clean data samples, they have the capability to provide very precise measurements of lifetimes, relative branching ratios, substructure of hadronic decays, etc.
- CDF: Should be competitive in rare decays and maybe in other areas as well.
- CLEO: Converting to CLEO-c which will operate at various charmonium resonances. Precise measurements of absolute branching fractions and $f_D \& f_{D_s}$ via $D^+ \rightarrow \ell^+ \nu \& D_s^+ \rightarrow \ell^+ \nu$ decays. Also interesting semileptonic and mixing studies.
- BTeV: Will obtain billions of reconstructed charm decays and will be strong in areas where fixed-target experiments like FOCUS and E791 are strong.